Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 11, 2026
- 
            Gardas, Ramesh L. (Ed.)The solvation structure and transport properties of Li+ in ionic liquid (IL) electrolytes based on n-methyl-n-butylpyrrolidinium cyano(trifluoromethanesulfonyl)imide [PYR14][CTFSI] and [Li][CTFSI] (0 ≤ xLi ≤ 0.7) were studied by Raman and Nuclear Magnetic Resonance (NMR) diffusometry, and molecular dynamics (MD) simulations. At xLi < 0.3, Li+ coordination is dominated by the cyano group. As xLi is increased, free cyano-sites become limited, resulting in increased coordination via the sulfonyl group. The 1:1 mixture of the symmetric anions bis(trifluoromethanesulfonyl)imide ([TFSI]) and dicyanamide ([DCA]) results in similar physical properties as the IL with [CTFSI]. However, anion asymmetry is shown to increase Li-salt solubility and promote Li+ transference. The lifetimes of Li+-cyano coordination for [CTFSI] are calculated to be shorter than those for [DCA], indicating that the competition from the sulfonyl group weakens its solvation with Li+. This resulted in higher Li+ transference for the electrolyte with [CTFSI]. In relation to the utility of these electrolytes in energy storage, the Li–LiFePO4 half cells assembled with IL electrolyte (xLi = 0.3, 0.5, and 0.7) demonstrated a nominal capacity of 140 mAh/g at 0.1C rate and 90 °C where the cell with xLi = 0.7 IL electrolyte demonstrated 61% capacity retention after 100 cycles and superior rate capability owing to increased electrochemical stability.more » « less
- 
            Abstract Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions—25 wt.% LiCl and 62 wt.% H3PO4—cooled to −78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ions become less hydrated and pair up with Cl−, ice‐like water clusters form, and H⋅⋅⋅Cl−bonding strengthens. Surprisingly, this low‐temperature solvation structure does not strengthen water molecules’ O−H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O−H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH−and H+, the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li‐ion battery using LiMn2O4cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
